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Abstract. We report a new direct method for calculating Regge pole positions and residues.
Upon introduction of an absorbing optical potential sufficiently far in the asymptotic region,
the problem reduces to several iterative diagonalizations of a symmetric complex matrix. The
method is tested on well-studied cases of potential scattering.

1. Introduction

There has been recent interest in the complex angular momentum (CAM) techniques in
the theory of chemical reactions [1]. If an atom–diatom system possesses a transition
state resonance, collision partners form a long-lived triatomic complex whose rotation
and eventual decay lead to specific structures in the observable angular distributions [1].
Quantally, the angular velocity and angular lifetime of the complex are determined by
the positionλres of the (Regge) pole of theS-matrix element in the CAM plane, while
the corresponding residuerres defines the magnitude of the resonance contribution to the
differential cross section [2]. It is useful, therefore, to devise a method for calculating these
quantities for an arbitrary atom–diatom system. Various methods developed for calculation
of λres and rres in potential scattering include integration of the Schrödinger equation in
the CAM-plane [3–5], the use of a generalized variational principle [6], semiclassical
quantization techniques [7] and, more recently, the dimensional perturbation theory [8].
Although quite accurate, these methods often require cumbersome procedures, such as root
searching in the complex plane [3–5] or are difficult to extend beyond one dimension [7].
In this paper we introduce a simple direct approach which can be adapted to multichannel
systems and does not invoke semiclassical quantization rules. In order to do so we shall
follow the ideas already used in direct calculations of the complex energy poles [9] and
introduce an imaginary potential capable of absorbing the outgoing wave in each channel.
We shall demonstrate the applicability of the method in the case of elastic scattering and
defer detailed analysis of the multichannel systems to further publications.

2. Regge states

Consider the radial Schrödinger equation for a single particle with angular momentum` and
energyE = h̄2k2/2m scattered by a short-ranged central field (for convenience we replace
` by λ− 1

2)

d29

dr2
+
[
k2− U(r)− (λ

2− 1
4)

r2

]
9 = 0. (1)
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The physical scattering solution9(r) vanishes at the origin,

9(r = 0) = 0 (2)

and asr →∞ has the asymptotic form

9(r) ≈ exp(−ikr + iλπ/2− iπ/4)+ S(λ) exp(ikr − iλπ/2+ iπ/4) (3)

where S(λ) is the S-matrix. For real (half-integer) values ofλ conservation of particle
forces|S(λ)| = 1 but if 9(r) is analytically continued into the complexλ-plane,S(λ) may
diverge near, say,λn, n = 1, 2, 3 . . . so that asλ→ λn

S(λ) = rn

λ− λn + Sreg(λ) n = 1, 2, 3 (4)

whereSreg(λ) denotes the regular part of theS-matrix. Physically, equation (4) indicates
that atλ = λn equation (1) has a solution which, while regular at the origin, contains, as
r →∞, only an outgoing wave produced by the emitting centrifugal potential(λ2

n− 1
4)/r

2.
Indeed, dividing equation (3) byS(λ) and choosing appropriate normalization yields, as
λ→ λn a Regge state9λn(r) such that

9λn(r) ≈ exp(ikr) r →∞. (5)

Our aim is to calculate both the Regge pole positionλn and the value of the
corresponding residuern, n = 1, 2, 3 . . . for a given value ofk.

3. Regge pole positions

Equation (5) suggests that we can restrict the problem to a finiter-range by introducing
at r = R sufficiently far in the asymptotic region an infinite hard wall augmented by a
complex-valued potentialWopt(r), ImWopt < 0, capable of absorbing (without reflection)
the outgoing wave exp(ikr) (figure 1). Indeed, letWopt(r) be confined to [Ropt, R]. Then,
for λ = λn we have a square integrable solution8n(r) which vanishes at the origin, contains
only an outgoing wave for larger < Ropt and then vanishes again atr = R as this wave
is absorbed byWopt(r). In general, there may be many Regge polesλn and (integrable)
Regge states8n(r), n = 1, 2, 3 . . . . Introducing

ϕn(r) ≡ 8n(r)/r n = 1, 2, 3 . . . (6)

and multiplying the Schr̈odinger equation byr we see thatϕn(r) are the eigenfunctions of
an operatorL̂,

L̂ϕn = 3nϕn n = 1, 2, 3 . . .

ϕn(0) = ϕn(R) = 0
(7)

where

L̂ ≡
{
r

d2

dr2
r + r2[k2− U(r)−Wopt(r)]

}
(8)

and the pole positionsλn are related to discrete eigenvalues3n as

λn = (3n + 1
4)

1/2 n = 1, 2, 3 . . . . (9)

Note that due to the presence of the absorbing potentialWopt(r), L̂ is non-Hermitian and,
therefore, both3n andλn are complex valued. For a suitable set of basis functions{ϕm},
ϕm(0) = ϕm(R) = 0,m = 1, 2, 3 . . .M, solving equation (7) now reduces to diagonalization
of anM×M symmetric complex matrixLmm′ ≡ 〈ϕm|L̂|ϕm′ 〉. A concrete choice ofWopt(r)
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Figure 1. Real (full) and imaginary (broken) parts of the (unnormalized) first Regge state81 for
a hard sphere potential plotted versusr (arbitrary units), fork ≡ (2mE)1/2/h̄ = 1. The sphere
radiusRsph is chosen so thatkRsph= 1, and the absorbing potentialWopt(r) = W0(r − Ropt)

2

is confined toRopt < r < R. ReWopt and ImWopt are shown by the long broken and chain
curves, respectively.

and{ϕm} will be given below. Note that the use of absorbing potentials for finding poles in
the CAM plane is simpler than for finding complex energy eigenvalues [9]. Indeed, to obtain
complex energies one requires an optical potential acting as a (nearly) perfect absorber for
a wide range of energies. The task of finding such a potential is quite difficult [10]. In the
case of Regge poles, the energyE is fixed, while the asymptotic form (5) applies to all (not
too large) values ofλ. We therefore only require a potentialWopt(r) capable of absorbing
a single plane wave exp(ikr) with E = h̄2k2/2m, which is easy to construct.

4. The residues

In the case of a single-channel system, thenth residue of theS-matrix, rn, can be found
by a simple quadrature, provided9λn(r) in equation (5) is known. This can be obtained
by analysing the behaviour of the coefficient multiplying an incoming wave in equation (3)
in the vicinity of λn. Indeed, a small shift ofλ away fromλn, λn → λn + δλ, produces a
small changeδVcent(r) in the centrifugal term in equation (1),

δVcent(r) = 2λnδλ/r
2. (10)

The larger asymptote of the solution regular at the origin contains, atλ = λn+ δλ, a small
incoming wave

9λn+δλ(r) ≈ exp(ikr)+ δD exp(−ikr) r →∞. (11)

CalculatingδD with the help of perturbation theory [11] to the first order inδVcent, dividing
equation (11) byδD and comparing with equation (4) yields [12]

rn =
{
−ik−1λn

∫ ∞
0
92
λn
(r)r−2 dr

}−1

n = 1, 2, 3 . . . . (12)
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Finally, we note that the integral in equation (12) converges due to the presence ofr−2.
This suggests that for a finite-range calculation with sufficiently largeRopt, 9

2
λn
(r)r−2 in

equation (12) may be replaced byϕ2
n(r) defined in equation (6).

5. Calculations and results

To demonstrate applicability of the method, we analyse the cases of potential scattering
by a hard sphere and by a Yukawa potential [3, 4]. In the hard sphere case, the analytical
continuation of theS-matrix into the complexλ-plane is readily available in terms of the
Hankel functions [13], which provides a straightforward test for the accuracy of our method.
Regge poles for Yukawa potentials have been studied earlier by Burke and co-workers [3, 4].
Several comments are in order. It would follow from the discussion at the end of section 3
that aWopt(r) independent ofλ and located far enough into the asymptotic region should give
good estimates for a number of Regge poles closest to the origin. The use of equation (5)
requires, however, that the centrifugal term(λ2

n − 1
4)/r

2 is negligible inside [Ropt, R], so
that as|λn| increases the method will become increasingly less accurate. In practice, slow
convergence of9λn(r) to its asymptotic value (5) requires very large values ofR if λn ∼= 1
and, therefore, large basis sets are needed to span the interval [0, R]. The difficulty can
be overcome by using smaller values ofR and an iterative procedure to converge the pole
positions. ForRopt large enough to neglect the short-rangeU(r) in equation (1), the potential
inside [Ropt, R] is Wopt(r)− (λ2

n − 1
4)/r

2 and the solution of equation (1) to the left ofRopt

is of the form

9(r) = r1/2H
(1)
λ (kr)+ A(Wopt, λ)r

1/2H
(2)
λ (kr) (13)

where H(1)
λ (kr) and H(2)

λ (kr) are the Hankel functions of the first and second kind,
respectively. In the first iteration we replacer1/2H

(1)
λ (kr) andr1/2H

(2)
λ (kr) in equation (13)

by their asymptotic valuesC(1) exp(ikr) and C(2) exp(−ikr) and obtain, therefore,Wopt

which absorbs the plane wave exp(ikr). ThisWopt is then substituted into equation (8) and
the values ofλn, n = 1, 2, 3 . . . are calculated as discussed in section 3. Then a chosen
value λj is used to recalculateWopt in equation (13) using this time exact values of the
Hankel functions. The modifiedWopt is then substituted back into equation (8) and the
procedure is repeated until a converged value ofλj is obtained. Note that after the first
iteration the modifiedWopt becomes dependent on the choice ofλj so that only one pole
at a time can be converged iteratively. The simplest choice ofWopt is a complex-valued
δ-potentialWopt(r) = W0δ(r − Ropt) for which W0 can be obtained analytically. For the
same basis set the accuracy can, however, be increased by choosing a smooth absorbing
potential(W0 = W1 + iW2), Wopt(r) = W0(r − Ropt)

N , Ropt < r < R, and 0 otherwise, so
that8n(r) in equation (6) has a discontinuity in theN -th derivative atr = Ropt.

Finally, to calculate the residuerj we use the accurate eigenfunction8j of equation (6)
normalized according to equation (5). To speed up the convergence, we integrate
ϕ2
j (r) = 82

j (r)/r
2 numerically to some cut-off valueRC sufficiently large for8j to

have the asymptotic form8j ≈ r1/2H
(1)
λj
(kr). The rest of the integral in equation (14)

is calculated numerically along a contour transformed from the real to the imaginaryr-axis
whereH(1)

λj
(kr) decays exponentially.

For a hard sphere potential of radiusRsph

U(r) =
{
∞ 0< r < Rsph

0 otherwise
(14)
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Table 1. Positionsλ1 and residuesr1 of the first(n = 1) Regge pole as a function ofkRsph for
the hard sphere potential (14). Also given are their exact values calculated independently.

kRsph λ1 λ1 (exact) r1 r1 (exact)

1.0 (1.88, 1.71) (1.88, 1.71) (0.248,−0.119) (0.248,−0.119)
2.0 (3.13, 2.10) (3.13, 2.10) (0.302,−0.153) (0.302,−0.153)
3.0 (4.30, 2.39) (4.30, 2.39) (0.340,−0.177) (0.340,−0.177)
4.0 (5.44, 2.61) (5.44, 2.61) (0.370,−0.196) (0.370,−0.196)
5.0 (6.56, 2.80) (6.55, 2.81) (0.396,−0.212) (0.396,−0.212)
6.0 (7.66, 2.97) (7.66, 2.98) (0.419,−0.226) (0.419,−0.226)
7.0 (8.74, 3.13) (8.75, 3.13) (0.440,−0.238) (0.440,−0.238)
8.0 (9.83, 3.24) (9.83, 3.26) (0.458,−0.250) (0.459,−0.250)
9.0 (10.9, 3.38) (10.9, 3.39) (0.476,−0.261) (0.476,−0.260)

10.0 (12.0, 3.51) (12.0, 3.51) (0.492,−0.270) (0.492,−0.270)

Table 2. Positionsλ1 and residuesr1 of the first (n = 1) Regge pole as a function ofk2 for
an attractive Yukawa potential (15). Also given are their values calculated using the computer
code described in [4].

k2 λ1 λ1 [4] r1 r1 [4]

0.01 (1.53, 8.77(−2)) (1.53, 8.75(−2)) (8.32(−4), 1.75(−2)) (8.32(−4), 1.74(−2))
0.1 (1.11, 8.30(−3)) (1.11, 8.30(−3)) (2.95(−2), 0.165) (2.95(−2), 0.165)
0.2 (1.14, 0.156) (1.14, 0.156) (7.46(−2), 0.314) (7.54(−2), 0.314)
0.32589 (1.16, 0.237) (1.16, 0.237) (0.139, 0.488) (0.139, 0.487)
0.505824 (1.17, 0.338) (1.17, 0.339) (0.231, 0.723) (0.232, 0.724)
0.680519 (1.17, 0.424) (1.17, 0.424) (0.324, 0.945) (0.329, 0.942)
0.918214 (1.14, 0.526) (1.15, 0.526) (0.448, 1.24) (0.445, 1.23)
1.1 (1.13, 0.596) (1.13, 0.595) (0.533, 1.45) (0.535, 1.45)
2.06547 (0.989, 0.874) (0.989, 0.873) (0.824, 2.35) (0.895, 2.63)

we have used the simplest basis of sine functions spanning the intervald ≡ [Rsph, R],
ϕm(r) = d−1/2 sin[πm(r − Rsph)d], m = 1, 2, 3, . . . to diagonalizeLmm′ . The results
for the first Regge pole(j = 1) are given in table 1, together with the exact values
of λ1 and r1 for different values ofkRsph between 0 and 10. The exact values of pole
positions and residues in table 1 were obtained independently with the help of the relation
S(λ) = −H(2)

λ (kRsph)/H
(1)
λ (kRsph) [13]. Table 2 gives the pole positions and residues for

the Yukawa potential

U(r) = Ar1/2 exp(−αr) (15)

with A = −5 andα = 1 studied in [4].

6. Conclusions

We have proposed a simple direct method for calculating the Regge pole parameters by
several iterative diagonalizations of a complex symmetric matrix. For a single-channel
system, the results are shown to be in good agreement with those in [3, 4]. The method
can be extended to multichannel systems by inserting different absorbing potentials into
different open channels, provided the total angular momentum enters the coupled equations
in a sufficiently simple form, as is the case for atom–diatom collisions [14]. Note, however,
that in this case there is no simple relation, similar to equation (12), between the Regge state



6530 D Sokolovski et al

and the matrix of residues. Finally, the effort of computing the pole parameters increases
with the value ofkR0 (R0 is the size of the target potential). In general, efficiency of the
method can be improved with the help of various numerical techniques available for matrix
diagonalization and by a careful choice of the basis functions, e.g. through prediagonalization
of a part of the operator in equation (8).
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